

# Bayesian Decision Analysis for climate decision-making

**Sensitivity to decision attributes** 

**Cecina Babich Morrow** 

COMPASS Computational Statistics and Data Science University of Bristol

24 May 2024





- 1. Example: Heat-stress in the UK
- 2. Prior work: Uncertain risk
- 3. Current work: Uncertain decision attributes
- 4. Results
- 5. Conclusions



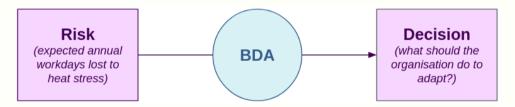
#### **Example: Heat-stress in the UK**

#### An idealised example



What should a UK company do to combat the effects of heat stress? Using Bayesian Decision Analysis (BDA):

- Risk: How much is heat going to impact our workers?
- Optimal Decision: What action should we take given that risk level?







How does variation in decision-related attributes of the BDA framework affect the decision output?

- Uncertainty: How robust is our decision to variation in financial cost?
- Sensitivity: Which parameters is our decision most sensitive to?
- How do uncertainty and sensitivity vary spatially?

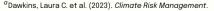


#### **Prior work: Uncertain risk**

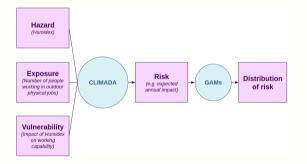
## **Uncertainty in risk**

Following Dawkins et al. 2023<sup>a</sup>:

- Risk is composed of hazard, exposure, and vulnerability inputs<sup>b</sup>
- 2. Apply the CLIMADA risk assessment platform<sup>c</sup> to each climate model ensemble member
- 3. Use generalised additive models to generate 1000 samples of risk in each location across the UK



<sup>&</sup>lt;sup>b</sup>Reisinger, A. et al. (2020).





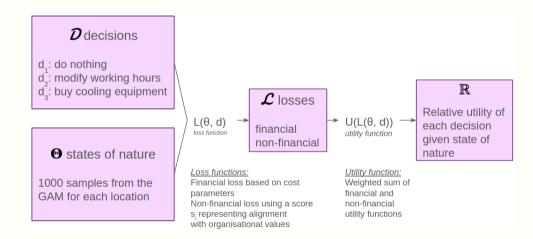
<sup>&</sup>lt;sup>c</sup> Aznar-Siguan, G. and Bresch, D. N. (2019). *Geoscientific Model* Development.



#### **Current work: Uncertain decision attributes**



#### **Bayesian Decision Analysis: Our framework**



#### **Bayes optimal decision**



Pick the decision that maximises expected utility:

Bayes decision under utility U

Select the decision  $d^*$  such that

$$d^* = \arg \max_{d} \sum_{\theta \in \Theta} U[L(\theta, d)] p(\theta) = \arg \max_{d} \overline{U}(d)$$

In our case,

$$d^* = \arg \max_{d} \frac{1}{1000} \sum_{n=1}^{1000} U(\theta_n, d)$$

# Varying financial costs



Took 1000 Latin hypercube samples of combinations of financial cost parameters for  $d_2$  and  $d_3$  from ranges of values:

| Action | Cost per person | Added cost per day of use | Reduced cost per day | Si |
|--------|-----------------|---------------------------|----------------------|----|
| $d_1$  | £0              | £0                        | £0                   | 5  |
| $d_2$  | [£80, £120]     | [£20, £60]                | [£40, £60]           | 7  |
| $d_3$  | [£350, £800]    | [£1.50, £2.50]            | [£60, £90]           | 4  |

Table: Loss function parameters for each decision

Calculated the Bayes optimal decision  $d^*$  in each location for every sample.



#### **Results**



#### Uncertainty

How robust is our decision to variation in the financial cost parameters?

In the majority of cells, any of the three decisions could be optimal depending on the combination of financial cost parameters.

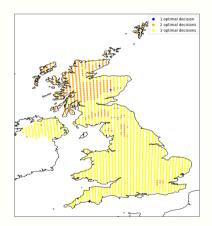


Figure: Number of optimal decisions per location across the 1000 combinations of financial cost parameters.



## Uncertainty



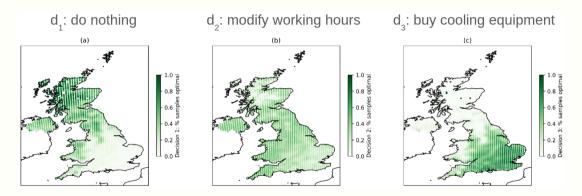


Figure: Proportion of Latin hypercube samples for which each decision was the optimal decision selected by BDA for (a)  $d_1$ : do nothing, (b)  $d_2$ : modify working hours, and (c)  $d_3$ : buy cooling equipment.

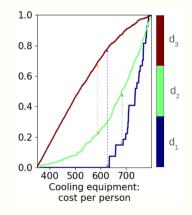


## **Sensitivity: Regional Sensitivity Analysis**

For a given financial cost parameter  $x_i$ , how different are the conditional CDFs of  $x_i$  given a particular optimal decision value?

Take the average Kolmogorov-Smirnov (KS) statistic between each conditional CDF  $F_{x_i|d_i}$ :

$$\begin{split} \mathsf{mean}_{j,k}[\mathit{KS}(x_i)] &= \mathsf{mean}_{j,k}[\max_{x_i}|\mathit{F}_{x_i|\mathit{d}_j}(x_i|\mathit{d}^* = \mathit{d}_j) \\ &\quad -\mathit{F}_{x_i|\mathit{d}_k}(x_i|\mathit{d}^* = \mathit{d}_k)|] \end{split}$$



#### Sensitivity



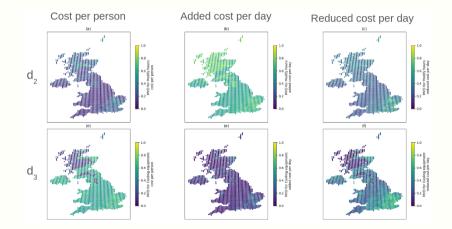


Figure: Mean KS statistic for each financial attribute of  $d_2$  and  $d_3$ .



#### Conclusions

#### Conclusions



#### So far...

- The optimal decision is not very robust to variation in financial cost parameters
- Decision sensitivity to the various financial cost parameters varies
- The optimal decision *may* be more sensitive to variations in the decision attributes than to variations in risk<sup>1</sup>

#### What's next?

- What happens when we vary other decision attributes? Both risk and decision attributes? Utility function?
- How can we use this information to improve how we make climate-related decisions?

<sup>&</sup>lt;sup>1</sup>Dawkins, Laura C. et al. (2023).



# **Questions?**

#### **Cecina Babich Morrow**

COMPASS Computational Statistics and Data Science University of Bristol

24 May 2024