

The Use of Utility

Utility functions in a Bayesian Decision Analysis framework

Cecina Babich Morrow

COMPASS Computational Statistics and Data Science University of Bristol 7 December 2023

- **1. [Decision theory](#page-2-0)**
- **2. [Life without utility](#page-5-0)**
- **3. [Von Neumann-Morgenstern Utility Theorem](#page-10-0)**
- **4. [Utilizing a utility function](#page-23-0)**
- **5. [Conclusions](#page-29-0)**

[Decision theory](#page-2-0)

COMPASS

How can we make decisions under uncertainty?

Goal: Create a decision rule that is optimal given the information we have available

- *•* Our decision rule will determine what decision we make given what we observe
- *•* We will use the observations to infer an uncertain state of nature (Bayesian inference)
- *•* We create our decision rule using some definition of "optimal", depending on our context-specific preferences

COMPASS 4/28

Notation

- *•* Θ: space of all possible states of nature *θ*
- *• X* : space of observations
- *• R*: space of all possible rewards *r*
- *• D*: space of all possible decisions *d*
- *• R*(*θ, d*) : Θ *× D → R*: reward function giving the reward for making decision *d* if the true state of nature is *θ*
	- *•* Alternatively, *L*(*θ, d*) = *−R*(*θ, d*): loss function

Utility function

But why use utility?

 $U(R(\theta, d)) : \mathcal{R} \to \mathbb{R}$: utility function mapping rewards to utility

[Life without utility](#page-5-0)

What if we just made decisions to maximize our expected reward?

Expected Monetary Value strategy

Select the decision *d ∗* such that

$$
\mathbf{d}^* = \arg\max_{\mathbf{d}} \sum_{\theta \in \Theta} R(\theta, \mathbf{d}) p(\theta)
$$

$$
= \arg\max_{\mathbf{d}} \bar{R}(\mathbf{d})
$$

St. Petersburg Paradox

The game:

Start with an amount of money *S*1.

At each stage of the game $r \geq 1$, you can either take the money...

End with *S^r*

...or keep playing *→* flip a fair coin

Heads: your new stake is 4*S^r*

Tails: lose everything

St. Petersburg Paradox

The game:

Start with an amount of money *S*1.

At each stage of the game $r > 1$, you can either take the money...

End with *S^r*

...or keep playing *→* flip a fair coin Heads: your new stake is 4*S^r* Tails: lose everything

With an EMV strategy:

For each stage:

- \overline{R} (quit) = S_r
- \bullet \bar{R} (play another round) $=\frac{1}{2}\cdot 4\mathcal{S}_r + \frac{1}{2}$ $\frac{1}{2} \cdot 0 = 2S_r$

So we should play indefinitely!

St. Petersburg Paradox

With an EMV strategy:

P(infinite number of heads) = 0 , so we will lose our money with probability 1.

Figure: Probability of making it to stage *r* $COMPASS$ $8/28$

[Von Neumann-Morgenstern Utility Theorem](#page-10-0)

COMPASS

A little more notation

- *• R*: space of all possible rewards *r*
- *• P*: space of *lotteries* on *R*
	- *•* Probability distributions on *R*

\n- $$
\mathcal{P} = \{p : \mathcal{R} \to [0,1] | \sum_{r \in \mathcal{R}} p(r) = 1\}
$$
\n- For a given $L \in \mathcal{P}$, $L = \sum_i p_i r_i$
\n

-
- *• ⪯*: representing preferences on *P*

R = *{−*£20*,* £0*,* £80*}* $L = 0.8r_1 + 0.1r_2 + 0.1r_3$ $M = 0.1r_1 + 0.3r_2 + 0.6r_3$ $N = 0r_1 + 0r_2 + 1r_3$

Figure: Three possible lotteries *^L, ^M, ^N ∈ P*

We can also have *mixtures* of lotteries:

Figure: *O* is a mixture of *L* and *N*

We can also have *mixtures* of lotteries:

Figure: *O* is a mixture of *L* and *N*

We can express our preferences between lotteries using \preceq :

 N *≻* M *≻* L

Figure: Three possible lotteries $L, M, N \in \mathcal{P}$

Von-Neumann Morgenstern Utility Theorem

Given a set of axioms of "rational behavior" governing a decision-maker's preferences between outcomes, their decisions will act to maximize the expected value of some utility function.

Theorem (Von Neumann-Morgenstern Utility Theorem)

There exists U : $\mathcal{R} \rightarrow \mathbb{R}$ *such that for all L, M* $\in \mathcal{P}$ *,*

$$
L \succ M \iff \mathbb{E}^{L}[U(r)] > \mathbb{E}^{M}[U(r)]
$$

$$
\iff \sum_{i} \ell_{i}U(r_{i}) > \sum_{i} m_{i}U(r_{i})
$$

Axioms

- **Axiom 1 Completeness:** $\forall r_1, r_2 \in \mathcal{R}, r_1 \succ r_2$ or $r_2 \succ r_1$.
- **Axiom 2 Transitivity**: If $r_1 \succeq r_2, r_2 \succeq r_3$, then $r_1 \succeq r_3$.
- *•* **Axiom 3 Continuity**: For *L, M, N ∈ P* such that *N ⪰ M ⪰ L*, there exists *p ∈* [0*,* 1] such that $pL + (1-p)N \sim M$.
- **Axiom 4 Independence**: For all P , Q , $R \in \mathcal{P}$, $a \in (0,1]$, $P \succ O \implies aP + (1 - a)R \succ aQ + (1 - a)R$.

Lemma

If
$$
L > M
$$
 and $0 \le a < b \le 1$, then $bl + (1 - b)M > al + (1 - a)M$.

Intuition: we would rather have a higher probability of playing the lottery we prefer.

Proof sketch:

- Let $q = 0...$
- *•* Let *a >* 0, *N* = *bL* + (1 *− b*)*M ∼ a* $\frac{a}{b}N + (1 - \frac{a}{b})$ *b*)*N*...

Theorem (Utility Theorem)

 $L \succ M \iff \sum_i \ell_i U(r_i) > \sum_i m_i U(r_i)$

Finite case: Assume there are *n* rewards $A_1, ..., A_n \in \mathcal{R}$ such that $A_n \succ A_{n-1} \succ ... \succ A_1$. (Assume $A_n \succ A_1$, or this won't be very interesting) Defining *U*:

- Define $U(A_1) := 0, U(A_n) := 1$
- *•* By Axiom 3 (continuity), *∀ Aⁱ ∃ qⁱ* such that *Aⁱ ∼ qiAn* + (1 *− qi*)*A*1:

$$
\bullet\ \ U(A_i):=q_i
$$

Theorem (Utility Theorem)

 $L \succ M \iff \sum_i \ell_i U(r_i) > \sum_i m_i U(r_i)$

$$
(\iff) \text{ Assume } \sum_{i} \ell_{i}U(r_{i}) > \sum_{i} m_{i}U(r_{i}).
$$
\n
$$
L = \sum_{i} \ell_{i}A_{i} \sim L' := \sum_{i} \ell_{i}[q_{i}A_{n} + (1 - q_{i})A_{1}]
$$
\n
$$
= \left[\sum_{i} \ell_{i}U(A_{i})\right]A_{n} + \left[\sum_{i} \ell_{i}(1 - U(A_{i}))\right]A_{1}
$$

Similarly,

$$
M \sim M' := \left[\sum_i m_i U(A_i)\right] A_n + \left[\sum_i m_i (1 - U(A_i))\right] A_1
$$

COMPASS

Theorem (Utility Theorem)

 $L \succ M \iff \sum_i \ell_i U(r_i) > \sum_i m_i U(r_i)$

 $($ \Longleftarrow $)$ Assume $\sum_{i} \ell_{i}U(r_{i}) > \sum_{i} m_{i}U(r_{i}).$ Since $A_n \succ A_1$ and $\sum_i \ell_i$ U $(r_i) > \sum_i m_i$ U (r_i) , by our lemma:

$$
\left[\sum_i \ell_i U(A_i)\right] A_n + \left[\sum_i \ell_i (1-U(A_i))\right] A_1 \succ \left[\sum_i m_i U(A_i)\right] A_n + \left[\sum_i m_i (1-U(A_i))\right] A_1
$$

$$
L \sim L' \succ M' \sim M
$$

Theorem (Utility Theorem)

 $L \succ M \iff \sum_i \ell_i U(r_i) > \sum_i m_i U(r_i)$

 $($ \implies $)$ Assume L $>$ *M*.

$$
L \sim L' \succ M' \sim M
$$

$$
\left[\sum_{i} \ell_{i}U(A_{i})\right]A_{n} + \left[\sum_{i} \ell_{i}(1-U(A_{i}))\right]A_{1} \succ \left[\sum_{i} m_{i}U(A_{i})\right]A_{n} + \left[\sum_{i} m_{i}(1-U(A_{i}))\right]A_{1}
$$

Proof sketch:

Proof by contrapositive: assume $\sum_i \ell_i \mathsf{U}(r_i) \leq \sum_i \mathsf{m}_i \mathsf{U}(r_i) \implies \text{contradiction!}$

COMPASS 20/28

[Utilizing a utility function](#page-23-0)

COMPASS

Bayes decision

Instead of maximizing the expected reward directly, we can transform $R(\theta, d)$ into $U(R(\theta, d)).$

Bayes decision under utility U

Select the decision *d ∗* such that

$$
d^* = \arg\max_{d} \sum_{\theta \in \Theta} U[R(\theta, d)]p(\theta)
$$

$$
= \arg\max_{d} \bar{U}(d)
$$

Recap of the game:

Start with an amount of money *S*1. At each stage of the game *r ≥* 1, you can either take the money and leave with *S^r* ...or keep playing *→* flip a fair coin Heads: your new stake is 4*S^r* Tails: lose everything

How can we come up with a strategy other than gambling forever?

Potential utility function

$$
U(R(d, \theta)) := \frac{R(\theta, d)}{\delta + R(\theta, d)}
$$

Utility function:

$$
U(R(d, \theta)) := \frac{R(\theta, d)}{\delta + R(\theta, d)}
$$

Let $S_1 = \pounds 1, \delta = 4$:

At stage 1:

$$
\bar{U}(\text{quitting}) = 1 \cdot \frac{S_1}{\delta + S_1} = \frac{1}{4+1} = \frac{1}{5}
$$
\n
$$
\bar{U}(\text{playing another round}) = \frac{1}{2} \cdot \frac{4S_1}{\delta + 4S_1} + \frac{1}{2} \cdot 0 = \frac{1}{2} \cdot \frac{4}{4+4} = \frac{1}{4}
$$

So *d ∗* = Play another round

At stage 1:

$$
\overline{U}(\text{quit}) = 1 \cdot \frac{S_1}{\delta + S_1} = \frac{1}{4+1} = \frac{1}{5}
$$
\n
$$
\overline{U}(\text{play another round}) = \frac{1}{2} \cdot \frac{4S_1}{\delta + 4S_1} + \frac{1}{2} \cdot 0 = \frac{1}{2} \cdot \frac{4}{4+4} = \frac{1}{4}
$$

So *d ∗* = Play another round

If we got heads, then $S_2 = \pounds 4$ **At stage 2**: $\bar{U}({\mathsf{quit}}) = 1 \cdot \frac{{\mathcal{S}}_2}{{\mathcal{\delta}} + {\mathcal{S}}_2} = \frac{4}{4+4} = \frac{1}{2}$ 2 \bar{U} (play another round) $=\frac{1}{2}\cdot\frac{4\mathcal{S}_2}{\delta+4\mathcal{S}_1}$ $\frac{4S_2}{\delta + 4S_2} + \frac{1}{2}$ $\frac{1}{2} \cdot 0 = \frac{1}{2} \cdot \frac{16}{4+16} = \frac{2}{5}$ 5

So *d ∗* = Quit *→* No more playing indefinitely!

COMPASS 24/28

Figure: Utility functions and their corresponding stopping points for different values of *δ*

[Conclusions](#page-29-0)

COMPASS 26/28

Conclusions

- *•* Decision theory formalizes the process of decision making under uncertainty
- *•* Acting to maximize our expected reward can lead to some suboptimal decisions
- *•* If our preferences follow certain axioms of rationality, we can represent them using a utility function
- *•* The shape of our utility function represents our relationship to risk

References

Jim Smith (2010)

Bayesian Decision Analysis: Principles and Practice Cambridge University Press.

F.

F

Christian Robert (2007)

The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation Springer.

Y. Narahari (2012)

[Game Theory: Lecture Notes](https://gtl.csa.iisc.ac.in/gametheory/ln/web-ncp7-utility.pdf)

Indian Institute of Science

F. Eric Pacuit (2013)

[Proof of von Neumann Morgenstern Representation Theorem: Part 1-3](https://www.youtube.com/watch?v=ad_iXPBNQjg&t=2s)

YouTube

COMPASS 27/28

Questions?

Cecina Babich Morrow

COMPASS Computational Statistics and Data Science University of Bristol 7 December 2023