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Decision theory
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How can we make decisions under uncertainty?

How do we make decisions in a mathematically formalized way while accounting for
uncertainty?

Goal: Create a decision rule that is optimal given the information we have available
• Our decision rule will determine what decision we make given what we observe
• We will use the observations to infer an uncertain state of nature (Bayesian

inference)
• We create our decision rule using some definition of ”optimal”, depending on our

context-specific preferences
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Notation

• Θ: space of all possible states of nature θ

• X : space of observations
• R: space of all possible rewards r
• D: space of all possible decisions d
• R(θ,d) : Θ×D → R: reward function giving the reward for making decision d if

the true state of nature is θ
• Alternatively, L(θ,d) = −R(θ,d): loss function

Utility function

U(R(θ,d)) : R → R: utility function mapping rewards to utility

But why use utility?
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Life without utility
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EMV Strategy

What if we just made decisions to maximize our expected reward?

Expected Monetary Value strategy

Select the decision d∗ such that

d∗ = arg max
d

∑
θ∈Θ

R(θ,d)p(θ)

= arg max
d

R̄(d)
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St. Petersburg Paradox

The game:
Start with an amount of money S1.
At each stage of the game r ≥ 1, you can either take the money...

End with Sr
...or keep playing→ flip a fair coin

Heads: your new stake is 4Sr
Tails: lose everything
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St. Petersburg Paradox

The game:
Start with an amount of money S1.
At each stage of the game r ≥ 1, you can either take the money...

End with Sr
...or keep playing→ flip a fair coin

Heads: your new stake is 4Sr
Tails: lose everything

With an EMV strategy:
For each stage:
• R̄(quit) = Sr
• R̄(play another round) = 1

2 · 4Sr + 1
2 · 0 = 2Sr

So we should play indefinitely!
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St. Petersburg Paradox

Figure: Probability of making it to stage r

With an EMV strategy:
P(infinite number of heads) = 0, so
we will lose our money with probability 1.
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Von Neumann-Morgenstern Utility Theorem
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A little more notation

• R: space of all possible rewards r
• P : space of lotteries onR

• Probability distributions onR
• P = {p : R → [0, 1]|

∑
r∈R p(r) = 1}

• For a given L ∈ P , L =
∑

i piri
• ⪯: representing preferences on P
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Example

R = {−£20,£0,£80}
L = 0.8r1 + 0.1r2 + 0.1r3 M = 0.1r1 + 0.3r2 + 0.6r3 N = 0r1 + 0r2 + 1r3

Figure: Three possible lotteries L,M,N ∈ P
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Example

We can also havemixtures of lotteries:

O = αL+ (1− α)N ∈ P

Figure: O is a mixture of L and N

COMPASS 11/28



Example

We can also havemixtures of lotteries:

O = αL+ (1− α)N ∈ P

Figure: O is a mixture of L and N
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Example

We can express our preferences between lotteries using⪯:

N ≻ M ≻ L

Figure: Three possible lotteries L,M,N ∈ P

COMPASS 13/28



Von-Neumann Morgenstern Utility Theorem

Given a set of axioms of ”rational behavior” governing a decision-maker’s
preferences between outcomes, their decisions will act to maximize the expected
value of some utility function.

Theorem (Von Neumann-Morgenstern Utility Theorem)

There exists U : R → R such that for all L,M ∈ P ,

L ≻ M ⇐⇒ EL[U(r)] > EM[U(r)]

⇐⇒
∑
i

ℓiU(ri) >
∑
i

miU(ri)
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Axioms

• Axiom 1 - Completeness: ∀r1, r2 ∈ R, r1 ⪰ r2 or r2 ⪰ r1.
• Axiom 2 - Transitivity: If r1 ⪰ r2, r2 ⪰ r3, then r1 ⪰ r3.
• Axiom 3 - Continuity: For L,M,N ∈ P such that N ⪰ M ⪰ L, there exists p ∈ [0, 1]

such that pL+ (1− p)N ∼ M.
• Axiom 4 - Independence: For all P,Q, R ∈ P , a ∈ (0, 1],

P ≻ Q =⇒ aP+ (1− a)R ≻ aQ+ (1− a)R.
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Lemma

Lemma
If L ≻ M and 0 ≤ a < b ≤ 1, then bL+ (1− b)M ≻ aL+ (1− a)M.

Intuition: we would rather have a higher probability of playing the lottery we prefer.

Proof sketch:
• Let a = 0...
• Let a > 0, N = bL+ (1− b)M ∼ a

bN+ (1− a
b)N...
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Proof of Utility Theorem

Theorem (Utility Theorem)

L ≻ M ⇐⇒
∑

i ℓiU(ri) >
∑

imiU(ri)

Finite case: Assume there are n rewards A1, ..., An ∈ R such that An ⪰ An−1 ⪰ ... ⪰ A1.
(Assume An ≻ A1, or this won’t be very interesting)
Defining U:

• Define U(A1) := 0, U(An) := 1

• By Axiom 3 (continuity), ∀ Ai ∃ qi such that Ai ∼ qiAn+ (1− qi)A1:
• U(Ai) := qi
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Proof of Utility Theorem

Theorem (Utility Theorem)

L ≻ M ⇐⇒
∑

i ℓiU(ri) >
∑

imiU(ri)

( ⇐= ) Assume
∑

i ℓiU(ri) >
∑

imiU(ri).

L =
∑
i

ℓiAi ∼ L′ :=
∑
i

ℓi[qiAn + (1− qi)A1]

=

[∑
i

ℓiU(Ai)

]
An +

[∑
i

ℓi(1− U(Ai))

]
A1

Similarly,

M ∼ M′ :=

[∑
i

miU(Ai)

]
An +

[∑
i

mi(1− U(Ai))

]
A1
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Proof of Utility Theorem

Theorem (Utility Theorem)

L ≻ M ⇐⇒
∑

i ℓiU(ri) >
∑

imiU(ri)

( ⇐= ) Assume
∑

i ℓiU(ri) >
∑

imiU(ri).
Since An ≻ A1 and

∑
i ℓiU(ri) >

∑
imiU(ri), by our lemma:

[∑
i

ℓiU(Ai)

]
An +

[∑
i

ℓi(1− U(Ai))

]
A1 ≻

[∑
i

miU(Ai)

]
An +

[∑
i

mi(1− U(Ai))

]
A1

L ∼ L′ ≻ M′ ∼ M
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Proof of Utility Theorem

Theorem (Utility Theorem)

L ≻ M ⇐⇒
∑

i ℓiU(ri) >
∑

imiU(ri)

( =⇒ ) Assume L ≻ M.

L ∼ L′ ≻ M′ ∼ M[∑
i

ℓiU(Ai)

]
An +

[∑
i

ℓi(1− U(Ai))

]
A1 ≻

[∑
i

miU(Ai)

]
An +

[∑
i

mi(1− U(Ai))

]
A1

Proof sketch:
Proof by contrapositive: assume

∑
i ℓiU(ri) ≤

∑
imiU(ri) =⇒ contradiction!

COMPASS 20/28



Utilizing a utility function
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Bayes decision

Instead of maximizing the expected reward directly, we can transform R(θ,d) into
U(R(θ,d)).

Bayes decision under utility U

Select the decision d∗ such that

d∗ = arg max
d

∑
θ∈Θ

U[R(θ,d)]p(θ)

= arg max
d

Ū(d)
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A return to St. Petersburg

Recap of the game:
Start with an amount of money S1.
At each stage of the game r ≥ 1, you can either take the money and leave with Sr
...or keep playing→ flip a fair coin

Heads: your new stake is 4Sr
Tails: lose everything

How can we come up with a strategy other than gambling forever?

Potential utility function

U(R(d, θ)) :=
R(θ,d)

δ + R(θ,d)
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A return to St. Petersburg

Utility function:

U(R(d, θ)) :=
R(θ,d)

δ + R(θ,d)

Let S1 = £1, δ = 4:

At stage 1:
Ū(quitting) = 1 · S1

δ+S1
= 1

4+1 = 1
5

Ū(playing another round) = 1
2 · 4S1

δ+4S1
+ 1

2 · 0 = 1
2 · 4

4+4 = 1
4

So d∗ = Play another round
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A return to St. Petersburg

At stage 1:
Ū(quit) = 1 · S1

δ+S1
= 1

4+1 = 1
5

Ū(play another round) = 1
2 · 4S1

δ+4S1
+ 1

2 · 0 = 1
2 · 4

4+4 = 1
4

So d∗ = Play another round

If we got heads, then S2 = £4
At stage 2:

Ū(quit) = 1 · S2
δ+S2

= 4
4+4 = 1

2

Ū(play another round) = 1
2 · 4S2

δ+4S2
+ 1

2 · 0 = 1
2 · 16

4+16 = 2
5

So d∗ = Quit→ No more playing indefinitely!

COMPASS 24/28



A return to St. Petersburg

Figure: Utility functions and their corresponding stopping points for different values of δ
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Conclusions
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Conclusions

• Decision theory formalizes the process of decision making under uncertainty
• Acting to maximize our expected reward can lead to some suboptimal decisions
• If our preferences follow certain axioms of rationality, we can represent them

using a utility function
• The shape of our utility function represents our relationship to risk
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