Elic University of
BRISTOL

The Use of Utility

Utility functions in a Bayesian Decision Analysis framework

Cecina Babich Morrow

COMPASS
Computational Statistics and Data Science
University of Bristol 7 December 2023



B
Overview BRI
1. Decision theory
2. Life without utility
3. Von Neumann-Morgenstern Utility Theorem
4. Utilizing a utility function

5. Conclusions

COMPASS 2/28



Bl

o]4]
University of
BRISTOL

Decision theory

COMPASS



Bl
6]4]

How can we make decisions under uncertainty? :::

How do we make decisions in a mathematically formalized way while accounting for
uncertainty?

Goal: Create a decision rule that is optimal given the information we have available
® Our decision rule will determine what decision we make given what we observe

® We will use the observations to infer an uncertain state of nature (Bayesian
inference)

¢ \Ve create our decision rule using some definition of "optimal”, depending on our
context-specific preferences
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Notation s

® O: space of all possible states of nature ¢

X: space of observations

R: space of all possible rewards r

D: space of all possible decisions d

R(6,d) : © x D — R: reward function giving the reward for making decision d if
the true state of nature is 0

® Alternatively, L(0,d) = —R(0, d): loss function

Utility function

U(R(0,d)) : R — R: utility function mapping rewards to utility

But why use utility?
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EMV Strategy BRISTOL

What if we just made decisions to maximize our expected reward?

Expected Monetary Value strategy

Select the decision d* such that

d* =
arg max Z R(6,d)p(0)
0cO
= argmax R(d)
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St. Petersburg Paradox B

The game:

Start with an amount of money S;.

At each stage of the game r > 1, you can either take the money...
End with S,

...or keep playing — flip a fair coin
Heads: your new stake is 4S;,
Tails: lose everything
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St. Petersburg Paradox B

The game:

Start with an amount of money S;.

At each stage of the game r > 1, you can either take the money...
End with S,

...or keep playing — flip a fair coin
Heads: your new stake is 4S;,
Tails: lose everything

With an EMV strategy:

For each stage:

® R(quit) =S,
® R(play another round) = % - 48, + % -0 =28,
So we should play indefinitely!
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St. Petersburg Paradox

With an EMV strategy:
P(infinite number of heads) = 0, so

we will lose our money with probability 1.
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Figure: Probability of making it to stage r
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A little more notation ]

® R: space of all possible rewards r
e PD: space of lotteries on R
® Probability distributions on R

* P={p:R—= 0,13, crp(r) =1}
® ForagivenlL € P,L =) pjri

e <:representing preferences on P
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Example RIS

R = {—4£20, £0, £80}
L=08r+0.1ro+01r3 M=0.1r; +0.3ro +0.6r3 N =0r; +0ry + 1r3

L M

Figure: Three possible lotteries L, M,N € P
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Example bR

We can also have mixtures of lotteries:

O=al+(1—a)NeP
oL + (1-a)N

@ 1l-a

/ N\

© O

Figure: O is a mixture of L and N
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We can also have mixtures of lotteries:

O=al+(1l—a)NeP

O

F

N\
..0 QQQ

Figure: O is a mixture of L and N
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Example RIS

We can express our preferences between lotteries using =<:

N>~M>L

Figure: Three possible lotteries L, M,N € P
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Von-Neumann Morgenstern Utility Theorem R

Given a set of axioms of "rational behavior” governing a decision-maker’s
preferences between outcomes, their decisions will act to maximize the expected
value of some utility function.

Theorem (Von Neumann-Morgenstern Utility Theorem)

There exists U : R — R such that forallL,M € P,
LM < E [U(r)] > EM[U(r)]
< ZE,’U(I‘,’) > Zm,-U(r,-)
i i
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1 -
Axioms et

Axiom 1- Completeness: Vri,ro € R,ri = roorryg > ry.

Axiom 2 - Transitivity: If r; = ro, ro = r3,thenr; > rs.
Axiom 3 - Continuity: For L, M,N € P such that N = M = L, there exists p € [0, 1]
such thatpl + (1 — p)N ~ M.

Axiom 4 - Independence: For all P,Q,R € P, a € (0, 1],
P~Q = aP+(1—a)R> a0+ (1—a)R
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Lemma et

Lemma

IfL =Mand0<a<b<1thenbL+ (1-b)M>al + (1—a)M.

Intuition: we would rather have a higher probability of playing the lottery we prefer.
Proof sketch:

® leta=0..
®leta>0,N=bL+(1-b)M~ gN+ (1 - g)N..
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Proof of Utility Theorem bR

Theorem (Utility Theorem)
LM <— Zif,'U(l’,') > Zim,-U(r,-)

Finite case: Assume there are nrewards A4, ...,A, € RsuchthatA, = A,_1 = ... = A1.
(Assume A, = A1, or this won’t be very interesting)
Defining U:
e Define U(A1) :=0,U(An) :=1
® By Axiom 3 (continuity), V A; 3 gj such that A; ~ giAn + (1 — g;)A1:
* UA):=aqi
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Proof of Utility Theorem bR

Theorem (Utility Theorem)
L=M <= > 6U(r) > > mu(r)
(<=)Assume > (iU(r;) > >, miU(r;).
L= ZE,-Af ~ L= Zf/[q/'/\n + (1 —gi)A4]
- [Z GU(A)

Ant | (1 - U(Ai))] A

Similarly,

M~M = A+

> mi(l - U(A,-))] Ay

Z m/U(A,)
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Proof of Utility Theorem bR

Theorem (Utility Theorem)
LM <— Zif,'U(l’,') > Zim,-U(r,-)

(<= )Assume ) LiU(r;) > >, miU(ri).
Since A, >~ Ay and ) 4jU(ri) > > _;miU(r;), by our lemma:

An+ An+

> mi(l - U(A,-))] Ay

> 61— U(A;))] A= | miU(A)

L~ =M ~M

[Z GU(A)
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Proof of Utility Theorem bR

Theorem (Utility Theorem)
LM <~— Z,-E;U(r,-) > Z,-m,-U(ri)

(= )Assumel >~ M.
L~LU =M ~M

Zz,(l — U(A,))] A - Z m;U(A;)

An+

An+ > mi(l- U(A,-))] A

[Z GiU(A)

Proof sketch:
Proof by contrapositive: assume ) . (;U(r;) < >, m;U(r;) = contradiction!
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Bayes decision B

Instead of maximizing the expected reward directly, we can transform R(¢, d) into
U(R(0,d)).

Bayes decision under utility U

Select the decision d* such that

d* = argmax > UIR(6, d)]p(6)
0O
= argmax u(d)
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Recap of the game:
Start with an amount of money S;.
At each stage of the game r > 1, you can either take the money and leave with S,
...or keep playing — flip a fair coin
Heads: your new stake is 45,
Tails: lose everything

How can we come up with a strategy other than gambling forever?

Potential utility function

R(9,d)

VA, 0) = 5 e @)
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A return to St. Petersburg

Utility function:

U(R(d,0)) :=
LetS; =4£1,6 =4
At stage 1
U(quitting) =1 - 6+81 4J1r1 _ %
U(playing another round) = 3 - 651131

So d* = Play another round
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R(6,d)
5 +R(0,d)

1 1. 4 _1
+§'0—2 — 1
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A return to St. Petersburg BRISOL
At stage 1:
U(quit) =1 - 6+81 =i =3
U(play anotherround) = 3 - 535+ 3 -0 =4 - 737 = &

So d* = Play another round

If we got heads, then Sy, = £4

At stage 2:
1
Ulquit) =1 5% = 53 :1 2 o
1
U(play anotherround) = 5 - 772+ 50 =5 1195 = 3

So d* = Quit — No more playing indefinitely!
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R(s, d)

Stopping point

Figure: Utility functions and their corresponding stopping points for different values of §
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Conclusions e

Decision theory formalizes the process of decision making under uncertainty

Acting to maximize our expected reward can lead to some suboptimal decisions

If our preferences follow certain axioms of rationality, we can represent them
using a utility function

The shape of our utility function represents our relationship to risk
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https://gtl.csa.iisc.ac.in/gametheory/ln/web-ncp7-utility.pdf
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