

From climate risk to action:

Analysing adaptation decision robustness under uncertainty

Cecina Babich Morrow

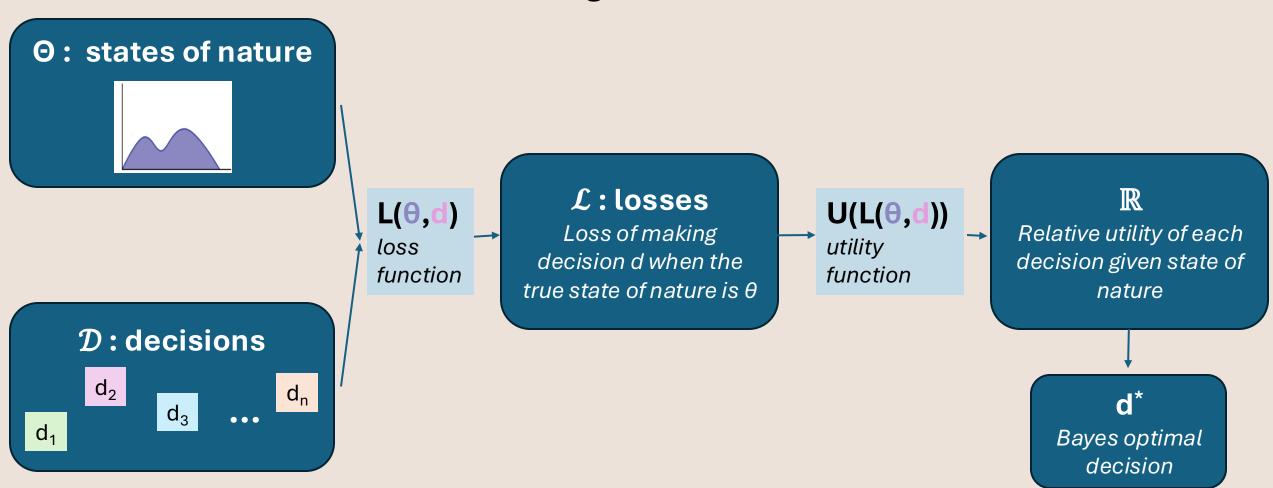
Supervisors: Laura Dawkins, Dan Bernie, Dennis Prangle
August 2025

Climate adaptation decision-making

How can we make robust climate adaptation decisions?

Uncertainty in climate risk:

- Climate projections
- Exposure and vulnerability


Uncertainty in characteristics of decision options:

- Financial costs
- Efficacies
- Characteristics of decision-makers

Bayesian Decision Analysis

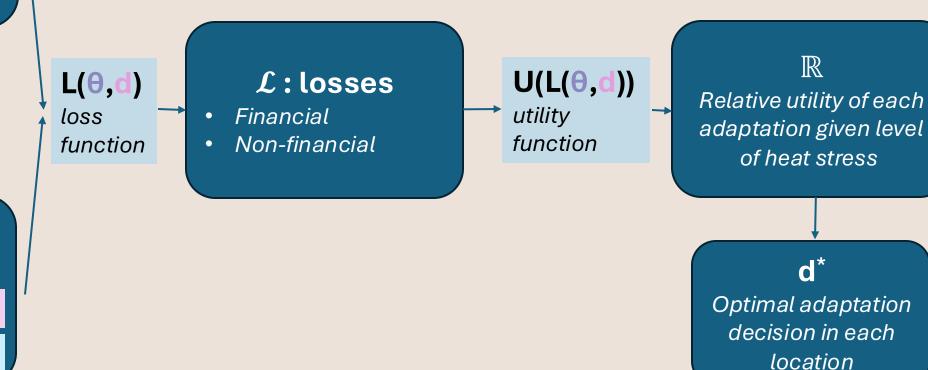
Bayesian Decision Analysis

Framework for decision-making under an uncertain state of nature

Bayes optimal decision

Select the decision that maximises expected utility:

Bayes decision under utility U


Select the decision d^* such that

$$d^* = \arg \max_{d} \sum_{\theta \in \Theta} U[L(\theta, d)] p(\theta) = \arg \max_{d} \bar{U}(d)$$

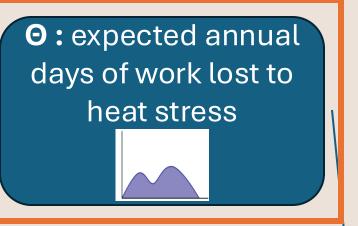
Example: Heat-stress in the UK

Our decision framework

Θ: expected annual days of work lost to heat stress

 \mathbb{R}

 \mathcal{D} : decisions


d₁: do nothing

d₂: modify working hours

d₃: buy cooling equipment

How robust are adaptation decisions to uncertainty in the inputs?

Uncertainty in risk

 \mathbb{R}

 d^*

Hazard
Humidex
(temperature
& humidity)

Exposure Number of people working in outdoor jobs

Vulnerability
Impact of
Humidex on
working
capacity

Risk
Expected
annual
working days
lost

Distribution of risk1000 samples
from GAM

Quantifying uncertainty

Following Dawkins et al. 2023:

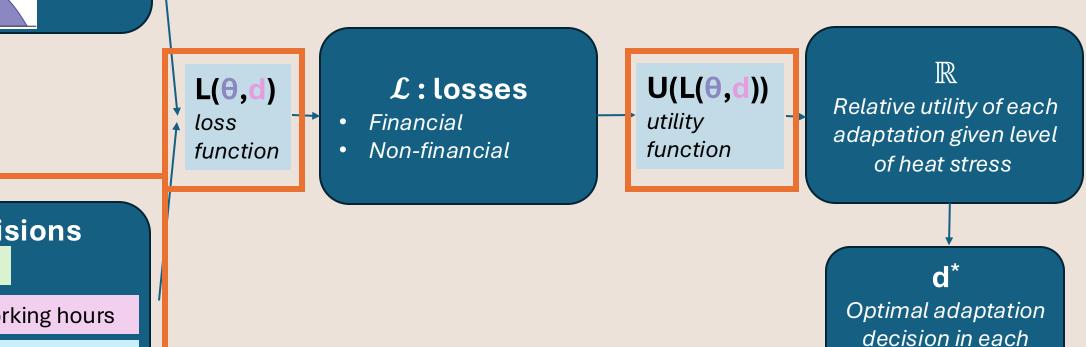
- Input hazard, exposure, and vulnerability data
- Apply a risk assessment model to each climate model ensemble member
- Generate 1000 samples of risk per location using Generalised Additive Models (GAMs)

Hazard
Humidex
(temperature
& humidity)

Varied over
162
possible
sets of
input values

Vulnerability
Impact
of Humidex
on working
capacity

Risk
Expected
annual
working days
lost


Distribution of risk 1000 samples from GAM Uncertain risk-related inputs

Sample the risk for each combination of plausible values for 5 risk-related inputs:

- Hazard: calibration method, warming level
- Exposure: exposure model
- Vulnerability: function parameters

Uncertainty in decision attributes

Θ: expected annual days of work lost to heat stress

location

 \mathcal{D} : decisions

d₁: do nothing

d₂: modify working hours

d₃: buy cooling equipment

Loss functions

 $L(\theta,d)$: $\Theta \times \mathcal{D} \rightarrow \mathcal{L}$ is the loss of making decision d if the true state of nature is θ

For a location j, GAM sample n, and decision i:

Financial loss:

 $L_1(\theta_{jn}, d_i) = (cost per person per year_i \times number of people_j)$ + (cost per day of work × (1 – % effectiveness_i) × θ_{in})

Non-financial loss:

$$L_1(\theta_{in}, d_i) = 10 - s_i \text{ where } 0 \le s_i \le 10$$

Utility function

 $U(L(\theta,d))$: $\mathcal{L} \to \mathbb{R}$ represents the relative value of each decision For a location j, GAM sample n, and decision i:

Financial utility	Non-financial utility
$U_1(L_1(\theta_{jn}, d_i)) = 1 - \frac{L_1(\theta_{jn}, d_i)}{\max_{n', i'} L_1(\theta_{jn'}, d_{i'})}$	$U_2(L_2(\theta_{jn}, d_i)) = 1 - \frac{L_2(\theta_{jn}, d_i)}{10}$

Overall utility function:

$$U(\theta_{jn},d_i) = k_1 U_1(L_1(\theta_{jn},d_i)) + k_2 U_2(L_2(\theta_{jn},d_i)) \text{ where } \mathbf{k_1}, \mathbf{k_2} \geq \mathbf{0}, \, \mathbf{k_1} + \mathbf{k_2} = \mathbf{1}$$

Uncertain decision-related inputs

Financial loss:

$$L_1(\theta_{jn}, d_i) = (cost per person per year_i) \times number of people_j) + (cost per day of work) \times (1 - % effectiveness_i) \times \theta_{jn})$$

Non-financial loss:

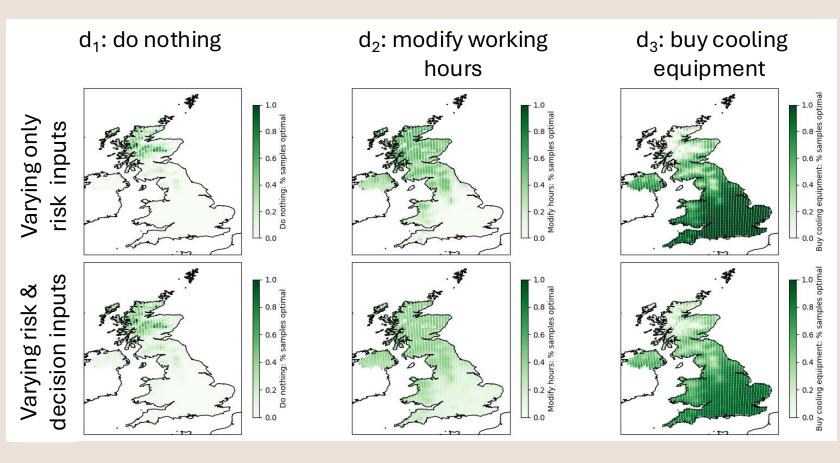
$$L_1(\theta_{in}, d_i) = 10 - s_i$$

Utility:

$$U(\theta_{jn}, d_i) = k_1 U_1(L_1(\theta_{jn}, d_i)) + k_2 U_2(L_2(\theta_{jn}, d_i))$$

Varied by taking 200 samples from a range of plausible values

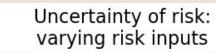
Overall process

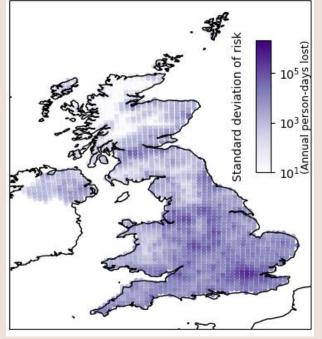

- Vary the risk-related inputs across a range of 162 combinations → record the optimal decision in each location
- Vary both risk-related and decision-related inputs across a range of 162 × 200 = 32,400 combinations → record the optimal decision in each location
- Characterise the uncertainty of the optimal decision & its sensitivity to each input

Results

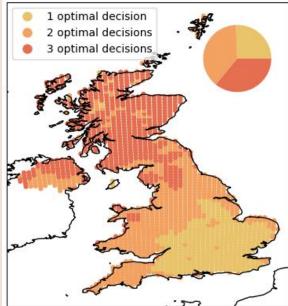
Where are the different adaptation options most often optimal?

Optimal decision by location

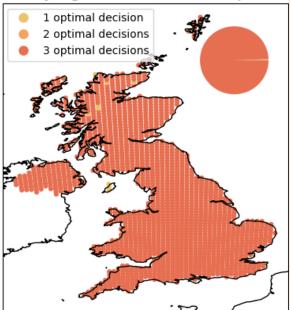

- Spatial distribution of where certain decisions are more often optimal
- We are less certain in the decision when varying risk and decisionrelated inputs



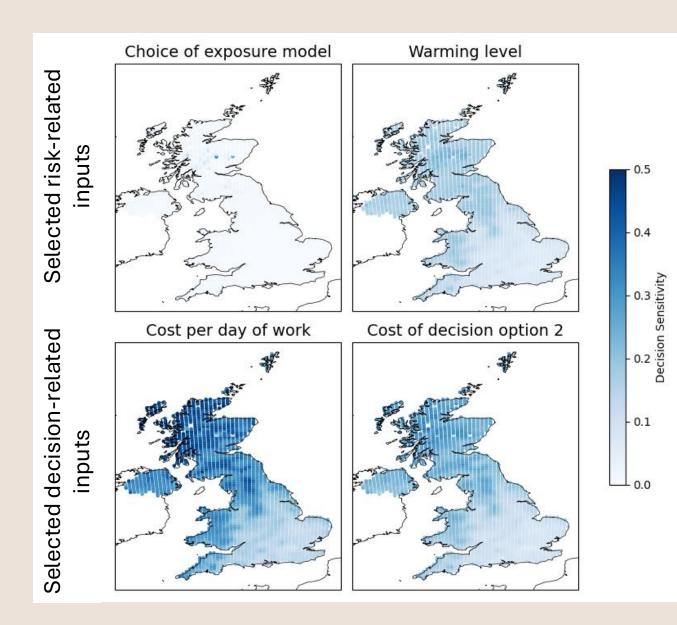
How uncertain is the optimal decision?


Decision uncertainty

- High uncertainty in climate risk does not necessarily translate into high uncertainty in decision
- When accounting for uncertainty in both risk and decision inputs, the decision becomes far more uncertain



Uncertainty of decision: varying risk inputs


Uncertainty of decision: varying risk & decision inputs

Which inputs is the optimal decision most sensitive to?

Decision sensitivity

- The decision is often more sensitive to decision-related inputs than to risk-related inputs
- Sensitivity to many inputs varies regionally

Conclusions

Conclusions

- Uncertainty and sensitivity analysis should be performed on adaptation decisions, not only on climate risk
- Decisions can be less sensitive to risk-related inputs than they are to decision-related ones
- Uncertainty and sensitivity analyses should be performed on a local basis

What's next?

- Real-world application
- Extensions to decision theory/sensitivity analysis methods

Preprint: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5317
909

Questions?