[•] Bayesian Decision Analysis: a crash course

Cecina Babich Morrow 22 October 2024 +

The setting

0

The year is 2041...

- Good news: Compass has received more funding, this time to run a construction company
- Bad news: the world is heating up, as are our statistics labourers

The setting

0

What should we do to adapt to heat stress? Bayesian Decision Analysis!

What could happen?

Space of possible states of nature: Θ

• Days of work lost per year

Need the distribution $p(\theta|x)$, for observations x.

We could be losing anywhere from 104,000 to 242,200 days of work annually.

Option	Cost per person	Added cost per day	Savings per day
Do nothing	£0	£0	£0
Modify working hours	£100	£20	£50
Buy cooling equipment	£500	£2	£80

What could we do?

Space of possible decisions: $\boldsymbol{\mathcal{D}}$

- 1. Do nothing
- 2. Modify working hours
- 3. Buy cooling equipment

 \mathcal{D}

Our decisions d:

- 1. Do nothing
- 2. Modify working hours
- 3. Buy cooling equipment

 The state of nature θ: $L(\theta, d)$

Loss function

Loss: How much will it cost to make decision d, if the number of days of work lost is θ ?

What might we lose?

Loss function to represent loss (financial or otherwise) of each decision, depending on the true state of nature

Our decisions d:

- 1. Do nothing
- 2. Modify working hours
- 3. Buy cooling equipment

<section-header>

___ U(L(θ, d))____ Utility function

Relative utility of decision d under state θ :

What should we do?

Pick the decision that maximises expected utility!

Bayes decision under utility U:

$$\begin{aligned} d^* &\in \arg\max_d \sum_{\theta \in \Theta} U(L(\theta, d)) p(\theta | x) \\ &= \arg\max_d \bar{U}(d) \end{aligned}$$

The decision

Buying cooling equipment maximises our expected utility!